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We compute renormalization-group fixed points and their spectrum in an
ultralocal approximation. We study a case of two competing nontrivial fixed
points for a three-dimensional real N-component field: the O(N )-invariant fixed
point vs. the cubic-invariant fixed point. We compute the critical value N, of the
cubic ¢*-perturbation at the O(N)-fixed point. The O(N )-fixed point is stable
under a cubic ¢*-perturbation below N.; above N, it is unstable. The Critical
value comes out as 2.219435 < N, <2.219436 in the ultralocal approximation.
We also compute the critical value of N at the cubic invariant fixed point.
Within the accuracy of our computations, the two values coincide.
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1. INTRODUCTION

Spin systems with an N-component real field variable, governed by a
Landau-Ginzburg type Hamiltonian, are of central importance both in
Euclidean quantum field theory and classical statistical mechanics. The
basic model is one with a global O(N) symmetry, the invariance under a
simultaneous rotation of all the spins. A prototypical Hamiltonial for such
a model, say on a lattice 4 = Z?, is

=% 5 % <§ ublx + 27+ (% ¢a(x>2>2} (1)

It is important to study the influence of perturbations which explicitely
break this symmetry to a smaller subgroup. For instance, in cubical crystals,
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one expects the spin interaction to react to the lattice structure. This
suggests additional terms in the Hamiltonian which are not rotation sym-
metric, but invariant under the cubic group. The cubic group is composed
of the permutations and reflections of the N components of the field. Such
a cubic invariant term is

1Y Y tax)? (2)

When (1) is augmented by (2), a competition of renormalization group
fixed points sets in, about which of them determines the long distance
behaviour of the model.

According to folklore, the O(N) fixed point becomes unstable above a
certain threshold value N,.. When this happens, the cubical fixed point
dominates the long distance behaviour. The value of N, is still being
debated. Early work on the e-expansion suggests that N_.>3. This has
been challenged by studies of Maier, Sokolov, and Shalaev(!*!% and by
Shpot,"” which suggest that N,<3. Recent Monte Carlo work® by
Caselle and Hasenbusch again indicates that N, should be very close to 3.
Within their precision, this is compatible with the picture from recent high
order perturbation expansions by Kleinert et al”® and by Shalaev,
Antonenko, and Sokolov.!!?

To our knowledge, the problem has not yet been looked at in the
framework of the block spin renormalization group.!® To study the
domains of attractions in a model with several competing fixed points is a
fundamental and challenging problem as it underlies Wilson’s explanation
of universality. A notorious trouble in this business is that one has to con-
sider general effective Hamiltonians which depend on an infinite number of
interaction terms. To control flows with a large number of couplings is a
very difficult task. Furthermore, when symmetries are reduced, the number
of couplings tends to proliferate dramatically.

This paper contains a study of both the O(N )-invariant fixed point
and the cubic fixed point in the framework of the hierarchical or ultralocal
approximation to Wilson’s renormalization group. Here we restrict our
attention to the case of D =3 dimensions. In the hierarchical approxima-
tion, the effective Hamiltonians are restricted to a (non-standard) kinetic
term plus local interactions. The local interactions are given by a potential,
which is a function of N variables.

2. HIERARCHICAL RENORMALIZATION GROUP

The hierarchical renormalization group is a block spin renormalization
group for so called hierarchical spin models: spin models with a non-translation



RG Fixed Points in Hierarchical Approximation 3

invariant kinetic term, designed to make the renormalization group local.
The hierarchical model and the full model belong to different universality
classes. Nevertheless they are related. The hierarchical renormalization
group is an ultralocal approximation to a lattice block spin renormalization
group. See refs. 10, 15 and references therein. Furthermore, the hierarchical
model is presumably a zeroth approximation to the full model in a lattice
derivative expansion. Hierarchical results are to our experience reasonable
approximations. However concerning their predictions about full models,
high precision cannot be expected. For instance, v comes out as 0.649 at the
N =1 Ising fixed point, as compared to 0.63 from &-expansion and Monte-
Carlo methods. Hierarchical models are known to be extremely valuable in
gaining qualitative information about the model under investigation and to
prepare the ground for further renormalization group studies, where non-
local interactions are included.

The hierarchical renormalization group for models with an N-compo-
nent real scalar field is a theory of the non-linear integral transformation

Ru,ﬁ,y(z)(lﬁ)=fdﬂy(é) Z(py +0)* (3)

where «, B, and y are real parameters and where du,({) is the Gaussian
measure on RY with mean zero and covariance y (times the unit matrix);
its Fourier transform is | du,(¢) e =e~#?7° We consider the renor-
malization group in the so called high temperature picture. See ref. 15 and
references therein. Our parameter values in (3) are

x=2, ﬂ=27(2+0)/2D, y=1 (4)

(You may take this as the definition of the high temperature picture.) Here
D is the dimension of the model. We restrict our attention to the most
interesting case, when D =3.

The transformation (3) is the composition of three steps: taking the
square, Gaussian convolution, and resealing. The numerical computation
of (3) will be decomposed into these steps.

3. ALGEBRAIC FORMULATION

We use the techniques described in refs. 15 and 6. Consider first the
O(N )-invariant case. A general even O(N )-invariant Boltzmann factor can
be written as a sum

ZH=73 )z, (5)
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and is parametrized by real coefficients Z,. The transformation (3)
becomes the following non-linear transformation in terms of the coor-
dinates (Z,,):

R(Z)n:ﬁzn z Gn,m(N’ y) Z ZlZm—l (6)
m=n 1=0

The coefficients G, (N, y) are defined as follows. (We call them structure
coefficients.) Let P, (¢) = (¢>)™ The Gaussian convolution of it is a linear
combination

[ A0 Py +0)= 3. Po(0) G (N ) (7

with coefficients (essentially the number of contractions)

S (N+2 -1 /
Gl N, ) = || RN

I=1

(8)

It is convenient to define G, ,,(N, y) =0 for n>m.

Analytical and numerical experience suggests the normalization Z, =
X, (p"//(2n)!) with a suitable constant p. For notational simplicity, we
prefer to display the formulas in the “raw” coefficients Z, as in (5).

For practical computations, one has to truncate the transformation
(6) to a finite number K of non-zero coefficients. For n < K, the resulting
transformation is

RK(Z)n:ﬁ2n Z Gn,m(N’ y) Z lem—l (9)

m=n =0

In the high temperature picture, this truncation scheme is known to con-
verge as K — oo. See ref. 11 for a detailed analysis of the one component
case.

Renormalization group fixed points are approximated as stationary
flows of the truncated transformation

Ry (Z%),=Z} (10)

The most interesting datum of a renormalization group fixed point is its
spectrum, from which one learns the behavior of the linearized flow in its
vicinity. The linearized flows around a fixed point is given by

K m
DRK(Y)nzzﬁzn Z Gn,m(N9 y) Z Zl*Ym—l (11)

m=n =0
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The spectrum of Z* is the set of eigenvalues A of (11). The eigenvalues
again are directly related to the critical exponents ¢'”. See ref. 18. In our
model, the-relation is A) =«@P, (A peculiarity of hierarchical models is
that the critical exponents are L-dependent.) The eigenvalue problem reads

DR(Y®), =20y (12)

The linearized renormalization group transformation (6) can be brought
to a manifestly symmetric form in the no-truncation limit, and is thus
diagonalizable. In practice, (12) turns out to be a very reliable way to
determine the spectrum of renormalization group fixed points.

4. NUMERICAL RESULTS: O(N) FIXED POINT

We have searched for fixed points of the system of algebraic equations
(9) with a Newton algorithm. The program was written in C++ using
the data type 1ong double representation for real numbers. In order to
check roundoff errors, we compared the 1ong double with the (simple)
double representation and found no significant deviations.

Table 1 shows the effect of truncation on the first few eigenvalues of
the non-trivial O(N) fixed point with N =2 components in D =3 dimen-
sions. (A trivial “volume eigenvalue” 1(® =2 has been omitted.) We see a
rapid increase of accuracy with the number of couplings. With the eigen-
values decreasing we see a loss in their precision (cf. Fig. 1). To get the

Table 1. Spectrum of O(2); Fixed Point

K pi] 1@ 23 2@
10 1.33 0.73 0.31 0.10

12 1.36 0.79 0.38 0.15

14 1.37 0.83 0.43 0.19

16 1.384 0.849 0.46 0.22

18 1.3854 0.854 0.484 0.25

20 1.3856 0.8560 0.489 0.262

22 1.38573 0.8562 0.4914 0.267

24 1.385742 0.85633 0.4917 0.268

26 1.3857434 0.8563400 0.49181 0.2691

28 1.38574348 0.85634081 0.491821 0.26923

30 1.385743489 0.85634089 0.4918225 0.269247
32 1.38574349013 0.8563409057 0.49182272 0.2692491
34 1.385743490193 0.85634090651 0.491822739 0.26924937
36 1.3857434901972 0.856340906576 0.4918227412 0.2692493996
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Fig. 1. Spectrum of O(2); fixed point as function of truncation order K.

same absolute precision it seems that the smaller the eigenvalue of interest
is, the bigger the number of couplings has to be chosen.

The first eigenvalue A" belongs to the critical exponent v=1/c"), or
v=1log(a)/D log(4). The numerical value of v is thus

y=0.7082249 (13)

With twenty couplings, the first eigenvalue comes out with an accuracy of
more than three digits, with thirty couplings of more than nine digits.

A computer assisted proof for the one component case was developed
in ref. 11. From it, one gets two sided bounds on the critical exponents
with arbitrary precision. It confirms the accuracy of our calculation by a
comparison at N =1.

Table 2 shows the spectrum of the non-trivial three dimensional O(N )-
fixed point as a function of the number of components N at truncation
order K = 30.

Analytic continuation in N is naturally possible for the system of
algebraic equations (9), since the N-dependence is encoded entirely in the
structure constants (7). These depend polynomially on N. We admit that
this continuation is not unique. To maintain the same precision as N
increases, one has to increase K. Up to N =3, the truncation order K =30
suffices.
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Table 2. Spectrum of O(N); Fixed Point at K=30

N i 12 23 yIS)
—22 1.59824229 0.848707935 0.435463969 0.213609627
-20 1.58740105 0.849947302 0.437978578 0.215734559
—14 1.55436959 0.853424303 0.445855470 0.222533363
—0.6 1.50993452 0.857177559 0.457002524 0.232579287
—0.2 1.48805474 0.858501342 0.462742151 0.237983202

0.2 1.466769838 0.859352758 0.468493388 0.243587863

0.6 1.446379983 0.859668728 0.474160525 0.249329758

1.0 1.427172478 0.859411649 0.479637300 0.255127880

1.4 1.409390602 0.858578978 0.484816590 0.260888802

1.6 1.401091348 0.857956757 0.487263833 0.263724669

2.0 1.385743489 0.856340897 0.491822589 0.269247586

2.6 1.365884074 0.853161847 0.497720103 0.277002053

3.0 1.354668292 0.850694212 0.500989433 0.281718313

32 1.349623859 0.849396273 0.502426577 0.283920286

1.63 T f T 0.862
153 | - = - 0.857
A A
143 4 r -4 0.852
133 L J \ L i L 0847
-3 -1 N1 3 -3 -1 N1 3
0.55 T | — 1 —7——— 0.30
L -1 0.28
0.50 B
-4 0.26
A A
F -1 0.24
0.45 - B
+ -1 0.22
0.40 - L L L L I L 0.20
-3 -1 N1 3 -3 -1y 1 3

Fig. 2. Spectrum of O(N ), fixed point at K= 30.
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Fig. 3. Visualization of Table 3.

We rediscover among other things the well known result that the
theory becomes trivial at N=—2, i.e.,, v=0.5.

5. CUBIC INVARIANCE

Cubic symmetry is the following. Consider an N-component model.
(The local spin takes values in R".) The cubic symmetry is the finite group
of transformations, consisting of rotations and reflections, which leaves
invariant the cube [ —1, 1]%.

We will restrict our attention to even Boltzmann factors, with the
property that

Z((=1)" s (=) Pn) = Z(15mr $) (14)

Such Boltzmann factors are functions of ¢7,..., ¢%. To be cubic invariant,

they additionally have to be symmetric functions of ¢7,.., ¢%. An even
cubic invariant Boltzmann factor is thus a function (14), which in addition

satisfies

Z(¢n(l)s'"s ¢n(N)) = Z(¢1a"" ¢N) (15)

for all permutations 7 € S,. We begin with the simplest case, the study of
cubic perturbations of the O(N )-invariant fixed point.
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5.1. Cubic Perturbations of the O(N) Fixed Point

We can extend the polynomial basis P,(¢) of O(N)-invariants as
follows. Let n :=(n,,n,)e N x {0, 1} and define

-(ze) () &

These symmetric functions do not close under multiplication. They do
however close under Gaussian convolution. The following holds true:

| (@) Py +0) =L Pol#) GonlN.1) (17)

with structure coefficients

G, 0), om 1)(N> 7) = NG 5(1,7) Gy (N +4, )

+ G o(1,y) G,y W(N+6,7)
G 1), m 1N 9) =G (1, 9) Gy (N 48, 7)
G, 0), m, 0)(N> ) = Gy (N, )

(18)

where the G, (N, y) are given by (8). The linearized renormalization
group at the O(N) fixed point with cubic ¢*-perturbations complicates to
DRK( Y)(no, n,)

1

K m,
=2ﬁ2n”+4n‘ Z Z G(no,nc),(m(),mc)(Ns 7) z Z("?O,O)Y(mrlo,mc) (19)

my=n, m,=0 1,=0

The O(N )-invariants, defined by n.=0, form an invariant subspace. The
cubic invariant eigenvectors generally have non-vanishing O(N)-com-
ponents. The cubic eigenvalues will be denoted by x”. We order them
according to their degree of relevance.

Table 3 shows the O(N )-invariant and the cubic invariant spectrum at
the O(N )-invariant non-trivial fixed point in three dimension as a function
of the number of components N. The leading cubic eigenvector is—in
e-expansion a deformation of—a cubic ¢*vertex. Here we restrict our
attention to eigenvectors of the ¢*-type times powers of ¢2. (The subleading
eigenvalue x® belonging to the cubic ¢Sinteraction is not displayed here.)

The largest cubic eigenvector, k!, becomes one at a critical value N,
of N. We learn from Table 3 that 2.20 < N.<2.25. A closer look at the
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Table 3. Cubic Spectrum of O(N); Fixed Point at K=30
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N 2 ey @ e 23
1.80 1.39321 0.98503 0.85721 0.54062 0.48960
1.90 1.38942 0.98865 0.85679 0.54359 0.49072
2.00 1.38574 0.99224 0.85634 0.54656 0.49182
2.10 1.38217 0.99580 0.85588 0.54950 0.49288
2.15 1.38042 0.99757 0.85562 0.55097 0.49340
2.20 1.37870 0.99932 0.85537 0.55243 0.49391
2.25 1.37701 1.00107 0.85511 0.55389 0.49442
2.30 1.37534 1.00280 0.85484 0.55534 0.49491
2.40 1.37209 1.00624 0.85430 0.55823 0.49588
2.50 1.36893 1.00965 0.85374 0.56109 0.49681

Table 4. N_ at the O(N) Fixed Point
N K e
2.219 30 0.99998479312540
40 0.99998479665524
22194 30 0.99999876426610
40 0.99999876780069
2.21943 30 0.99999981395124
40 0.99999981748619
2.219435 30 0.99999998889842
40 0.99999999243344
50 0.99999999243345
2.219536 30 1.00000002222169
40 1.00000002575671
50 1.00000002575672
221944 30 1.00000016384551
40 1.00000016738059
2.2195 30 1.00000226320303
40 1.00000226673882
2.220 30 1.00001973231681

40

1.00001973585855
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vicinity of N, yields the following. Table 4 shows that the value of N, is
located inbetween

2219435 < N, <2.219436 (20)

(Numerical errors are negligible.) We learn furthermore the important
lesson that the N-dependence of x(!) is rather weak between the two and
three component models.

6. CUBIC INVARIANT FIXED POINT

Besides the O(N )-invariant fixed point, we find a cubic invariant fixed
point. Again we restrict our attention to the case of three dimensions. The
cubic perturbations (16) have to be enlarged to a generating system of
cubic invariant polynomials. We have investigated several possibilities.

6.1. Lifted Representation

The first possibility uses an over complete system. Let n=

(11, Ny, H3,.) EN XN XN X -... Define

We represent our fixed point by coordinates Z,. With each collection is
associated a function

Z(¢)= ). Pid)Z, (22)

Inll <K

To define a suitable truncation, we introduce the norm |n| :=
ny + 2n, + 3n5.... In other words, we truncate the model to a maximal
power of fields. The summation is restricted to the finite subset of N* given
by [n| <K

Unfortunately, the functions (21) are not linearly independent. More-
over, the linear dependencies vary with N. Therefore, the representation
(22) is not unique. As an illustration, the situation for N =2 is studied in
detail in the Appendix.

As we intend to use the over complete representation, we have to
specify a lift of the renormalization group. We do this as follows. We have
that

P () Ppu(d) =Py s () (23)
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The simplicity of this operation is considered one advantage of system (21).
Gaussian convolution can be written in the form

Jduy(C)Pr_n(w-i-C): Y P)G, (N, 7) (24)

Izl <K
where the coefficients are the following. We compute

D 52
> WPm(cb): PAd) %G, (25)

a=1 n<m

with structure coefficients given by

m,—1=n,

1=
G, m=4abm,m, < Ja#b: e s

n,m

Mg yp—1 + 1 =Ng4p—1
Ye#a,b:m,=n,

m,—2=n,
G m=4a’my(m,—1) < Ja#l:{my_1+1=ny_, (27)

Vb?éa: mb:nb

m,—1l=n,
Ym=2a2a—1)m, < Ja#l:{m, +1=n,_, (28)
Vb #a: my=n,

my;—1=n,

G =22~ 1) £ N)m; = { (29)

Va#1l:m,=n,

We then compute the Gaussian integral as the matrix exponential thereof.
The result is

GunlNor)=exp (1) (30)
The matrix ¢ becomes upper triangular, when the couplings are sorted
according to their total power of fields ||z|. (When the renormalization
group is truncated to a finite power of fields, the Gaussian convolution
alone does not generate higher powers.) As the matrix ¢ is nilpotent, the
matrix exponential is a finite sum. Our first system of equations is

Re(Z),=p*"0 % G, u(N.y) Y ZZ (31)

Ilml| <K I+k=m
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This system of equations defines a lifting of the renormalization group.
Every fixed point of (31) becomes through (22) a fixed point of the original
hierarchical renormalization group. Their spectra of eigenvalues coincide
(in the no-truncation limit), but some eigenvalues become degenerate. The
eigenvalue problem is completely analogous to the O(N )-invariant case.
We do not write down the equations here.

We can use (31) to determine the cubic fixed point for any value of N.
The reason is again that N enters polynomially in the structure coefficients
(30). The drawback of this representation is that the number of couplings
increases very fast with the order of truncation. Table 5 shows this number
of couplings with ||n|| <K for K=1...29.

We looked at the system up to K =18. In this model one has to com-
pute 1597 couplings. To get an idea of the achieved precision, we did one
run with K=19, which means 2087 couplings at N =2. (Has anyone ever
computed a renormalization group with more unknowns?) The result is
displayed in Table 7. For the eigenvalues " an u® we expect an accuracy
of 2 digits from our runs with K= 18 (Table 6). For u®, the eigenvalue we
are mainly interested in, one probably has one additional digit.

As in the O(N) case we recognize one eigenvalue to become marginal
at a critical number of components N**®. The value of N*® comes out
as

22 SN <225 (32)
Table 7 combined with the investigation in polar coordinates for the

N =2-model, to be described below, suggests that the precision of u® at
K =18 is three digits.

Table 5. Number of Couplings in the Lifted System
for Given Truncation K

K #coups K #coups K #coups
1 2 10 139 20 2714
2 3 11 195 21 3506
2 4 12 272 22 4508
3 7 13 373 23 5763
4 12 14 508 24 7338
5 19 15 684 25 9296
6 30 16 915 26 11732
7 45 17 1212 27 14742
8 67 18 1597 28 18460
9 97 19 2087 29 23025
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Table 6. Cubic Spectrum at K=18

(4) (3 (5"

N 4 4 e u P u
2.00 1.4337 1.0188 0.8540 0.5968 0.4887 0.4697
2.10 1.3988 1.0066 0.8551 0.5712 0.5367 0.4759
2.15 1.3857 1.0034 0.8540 0.5717 0.5545 0.4811
2.20 1.3790 1.0013 0.8531 0.5963 0.5500 0.4840
2.25 1.3765 0.9996 0.8525 0.6163 0.5481 0.4844
2.30 1.3758 0.9980 0.8521 0.6309 0.5480 0.4836
240 1.3761 0.9952 0.8515 0.6498 0.5491 0.4809
2.50 1.3766 0.9926 0.8508 0.6606 0.5498 0.4783
2.70 1.3765 0.9880 0.8490 0.6704 0.5489 0.4740
3.00 1.3735 0.9813 0.8451 0.6730 0.5442 0.4685

The calculation with K=19 was only performed for the case N=2
and D =3, as it required about 22 hours CPU time on an IBM RS/6000-
590 workstation (121 SPECint92), K = 18 required around 10 hours on the
same system.

As the value u® decreases with increasing K, we expect the critical
value N to be given an upper bound by the value N <2.25.

For the Newton iteration to converge, one has to start from a suf-
ficiently close initial guess. We refrain from presenting a lengthy table of
fixed point couplings. Instead, we present a sufficiently accurate initial
guess from which anyone can reconstruct the cubic fixed point. (Later we
will discuss the fixed point couplings in the special case when N =2.) Our
search strategy was the following. We started at two ends of the interval of

Table 7. The First Six Eigenvalues of
the Spectrum at the Cubical Fixed
Point, N=2, for Three Different
Truncation Orders”

K /l(l) ”(2) Iu(3)
15 1.488 1.026 0.821
16 1.4557 1.0224 0.8399
18 1.43377 1.01889 0.85407

19 1.430341 1.018439 0.856580

a

Mmax =4 in all cases. For comparison the last
column shows the results from the calculation
with the over determined basis, truncation
order K= 18, cf. Tables 5 and 6.
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interest, at N=2 and at N =3. First we looked for the O(N) fixed point,
using the start values

Z,0,0,0,.,=0.3
Z,0,0.0..)=0.06
Z,0,0,0,.)=0.001
Zn0,0,0,.)=0VYn>2

Within our scheme (no rescaling on the Z,,) this initial guess turned out to
be sufficient to converge to the the O(N) fixed point at both values of N.
To find the cubic fixed point, we took the O(N) fixed point and changed
the following coefficients:

Z,0,0,0,.,)=0.64
Z(O, 1,0,0,.) — 0.007
Z.0.1.0..=0.00011

for the case N=2 and

Z0,0,0,0,.)=0.46
Z(O, 1,0,0,.) — 0.007
Z.0.1,0,.) = 0.00011

for N=3. (These values should be good enogh for K> 17.) Having found
the cubic fixed point at these two values of N we stepped towards the
critical N, from both sides, using the last fixed point as starting vector for
the next iteration.

6.2. N=2 Using Polar Coordinates

For fixed N, it seems natural to introduce spherical coordinates. For
N =2, we have that

Z($)=Z(r, )= ). Z,(r)cos(mg) (33)

m=0

The cubic symmetry can be implemented by requiring that the coefficients
Z,,(r) be zero for all m which are not integer multiples of 4. The result Z’
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of a hierarchical RG transformation applied to Z can be written in the
form

Z'(§) = e~ B j 42 e~ (P Eehitz2(¢) (34)

We introduce polar coordinates for { and ¢ through
{=r(cos @, sin @), ¢ = R(cos 0, sin 0) (35)
and expand the square of Z

()= ) (2%),,(r) cos(ml) (36)

m=0

The (Z?),, are related to the Z,, through

(Zz)m:% z zzmlzmz(ém,ml+m2+5m, |m17m2|) (37)

my nmy

The angular integration in Eq. (34) can be performed, resulting in

Z'(R,0)=> Z,(R) cos(mb) (38)
with

Zi(R) = e~ [ om0 (BrRYZ), () (39)

0

Here, I,, denotes the modified Bessel-function of order m. The next step is
an expansion of the Z,, in a power series of 2,

Zm:ZZm]r2l (40)
1

Expanding the Bessel-function and performing the integration over r yields
the following relation (for m even):

i —Z Cr(Z2) (41)

with

L rmp . (I+1"—))!
cm —ol—1'g2t 1y
=2 Y G G i ) !

(42)
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Fig. 4. Cubic fixed point Boltzmann factor Z* for N=2, as function of the two spin
components ¢, and ¢,.

A combination of the transformation with the square operation Eq. (37)
yields the structure coefficients of the complete hierarchical RG transforma-
tion for N=2. The matrix representing the linearized transformation is
then easy to compute.

A Newton solver was used to find the cubic fixed point. It is known
that for N =2 the cubical fixed point can be exactly mapped (by a rotation
of the spin vector with an angle n/4) to the product of two independent
Ising (N=1) fixed points. Our fixed point, plotted in Fig. 4, is indeed of
this type.

We determined the eigenvalues of the linearized transformation at that
fixed point. Some care was devoted again to study the truncation effects.
Table 8 shows the six leading eigenvalues at the cubical fixed points for
three different truncation orders. To the given precision, it is sufficient to
include K=32 powers of r? in the ansatz. Furthermore, it is sufficient to
include “angular momenta” m with m <m,,, =4. Going to m,,, =5 did
not change the results for the exponents at all. From the factorization of
the cubical fixed point into two Ising fixed points it follows that the
spectrum can be built from the Ising spectrum through

(1)

;“i, cub — %)“j, Isij'k, Isi (43)
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Table 8. Coupling Constants of the Cubical Fixed Point,
for K=30 and m,,,=4

k K=30 K=26 K=20 K=19 K=18 u

1 1.42717 1.42718 1.42867 1.43034 1.43377 1.4337

2 1.01841 1.01840 1.01831 1.01844 1.01889 1.0188

3 0.859411 0.859393 0.857925 0.856580 0.854073 0.8540

4 0.613255 0.613058 0.605915 0.602012 0.596873 0.5968

5 0.479634 0.479563 0.476318 0.473871 0.469780 0.4887

6 0.369252 0.368630 0.360018 0.357220 0.353718 0.4697

Table 9

! Zo Zy Zy Zy Zy

1 0.6404E — 01 0.0000E + 01 0.0000E + 01 0.0000E + 01 0.0000E + 01

2 0.3162E — 02 0.1518E —03 0.0000E + 01 0.0000E + 01 0.0000E + 01

3 0.9355E — 04 0.1190E — 04 0.0000E + 01 0.0000E + 01 0.0000E + 01

4 0.1902E — 05 0.4309E — 06 0.3827E — 08 0.0000E + 01 0.0000E + 01

5 0.2877E — 07 0.9721E — 08 0.2351E—09 0.0000E + 01 0.0000E + 01

6 0.3409E — 09 0.1550E — 09 0.6851E—11 0.3149E — 13 0.0000E + 01

7 0.3280E — 11 0.1877E — 11 0.1269E — 12 0.1624E — 14 0.0000E + 01

8 0.2633E — 13 0.1807E — 13 0.1869E — 14 0.4026E — 16 0.1135E—18

9 0.1799E — 15 0.1430E — 15 0.1728E — 16 0.6414E — 18 0.5103E —20
10 0.1064E — 17 0.9518E —18 0.1420E — 18 0.7407E — 20 0.1111E—21
11 0.5515E — 20 0.5436E — 20 0.9673E — 21 0.6629E — 22 0.1567E —23
12 0.2532E — 22 0.2703E — 22 0.5586E — 23 0.4798E — 24 0.1610E — 25
13 0.1039E — 24 0.1185E—24 0.2783E — 25 0.2895E — 26 0.1290E — 27
14 0.3836E — 27 0.4624E — 27 0.1214E — 27 0.1488E — 28 0.8391E — 30
15 0.1283E — 29 0.1620E — 29 0.4688E — 30 0.6628E — 31 0.4568E — 32
16 0.3911E — 32 0.5135E — 32 0.1618E — 32 0.2593E — 33 0.2125E — 34
17 0.1090E — 34 0.1479E — 34 0.5024E — 35 0.9000E — 36 0.8583E — 37
18 0.2786E — 37 0.3890E — 37 0.1412E — 37 0.2791E — 38 0.3042E — 39
19 0.6533E — 40 0.9346E — 40 0.3596E — 40 0.7760E — 41 0.9517E — 42
20 0.1401E —42 0.2046E —42 0.8292E —43 0.1934E —43 0.2633E —44
21 0.2728E — 45 0.4055E — 45 0.1719E — 45 0.4294E — 46 0.6415E — 47
22 0.4759E — 48 0.7182E — 48 0.3167E — 48 0.8407E — 49 0.1363E — 49
23 0.7311E—51 0.1117E —50 0.5100E — 51 0.1428E — 51 0.2490E — 52
24 0.9663E — 54 0.1493E — 53 0.7021E — 54 0.2061E — 54 0.3832E — 55
25 0.1068E — 56 0.1666E — 56 0.8042E — 57 0.2461E — 57 0.4847E — 58
26 0.9536E — 60 0.1499E — 59 0.7407E — 60 0.2353E — 60 0.4879E — 61
27 0.6560E — 63 0.1039E — 62 0.5239E — 63 0.1721E —63 0.3738E — 64
28 0.3246E — 66 0.5174E — 66 0.2658E — 66 0.8996E — 67 0.2039E — 67
29 0.1023E — 69 0.1641E — 69 0.8570E — 70 0.2982E — 70 0.7026E — 71
30 0.1539E — 73 0.2479E — 73 0.1315E —73 0.4694E — 74 0.1146E — 74
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From Table 2 we read the leading Ising eigenvalue being 1.4271725.(19)
Its square divided by two is 1.0184107, in nice agreement with the result
for the subleading eigenvalue of the cubic fixed point. The whole Ising
spectrum is part of the Cubic spectrum as follows when one of the Ising
eigenvalues is taken equal to the volume eigenvalue two.

The comparison reveals that the spectrum in the polar coordinate
representation and the spectrum in the overdetermined representation
agree. The value K=18 does not bring about a very high degree of
accuracy for the cubic invariant fixed point in the overdetermined represen-
tation. But our computer resources did not admit larger values of K.
We learn from the comparison that the overdetermined representation
generates new spurious eigenvalues. They should converge to the true ones
in the no-truncation limit. The first such spurious eigenvalue is however a
subleading (or irrelevant) one.

It might be interesting to have a look at the fixed point couplings
themselves. They are presented for (K, m,,,,) = (30, 4) in Table 9.

7. CONCLUSIONS

In the framework of the hierarchical renormalization group, we have
studied the stability of both the O(N) symmetric and the cubical fixed
point for D=3, in the range between N=2 and N =3. Concerning the
O(N) invariant fixed point, our analysis confirms the expected picture but
with a significantly shifted critical component number N,. While the value
of N, is very close to three in the full model, the hierarchical O(N) fixed
point in three dimensions becomes unstable with respect to cubic perturba-
tions already at N,=2.219. It has been observed in other contexts that
the dependence of certain quantities on the number of spin components is
shifted towards smaller values of N in the hierarchical approximation. For
instance, the two dimensional hierarchical non-linear g-model is asymptoti-
cally free for N>1 as opposed to N>2 in the full setting.*:'® In the
o-model, this is due to the absence of wave function renormalization in the
hierarchical approximation. Concerning the cubical fixed point, the issue of
the basis of interactions and its continuation to non-integer values of N
turns out to be already nontrivial. We solved this problem by using an
over-complete set of functions. The big number of couplings in this
approach required a considerable effort to solve the fixed point equations.
Furthermore, it might be considered as a problem that the continuation
from integer N to the real domain is not unique. The cubic invariant fixed
point also posesses a critical component number N/*®. But the corre-
sponding eigenperturbation becomes irrelevant above N*® and relevant
below N(*®  This is opposite to the O(N )-invariant fixed point. Within
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the accuracy of our computations, the values of N, and N® coincide.
A heuristic explanation of this could be the existence of a renormalized
cubic (¢?)2-trajectory inbetween both fixed points in the critical surface, on
which the flow reverses its direction at the critical component number. An
investigation of this conjectured trajectory would be very interesting, in
particular the scenario exactly at N,.

Supplementing the present work by a high order e-expansion (which
is certainly feasible) would be interesting and useful.

APPENDIX: A BASIS FOR THE N=2 CASE

The polynomials (22) do not form a basis for cubic invariant functions.
There are linear dependencies. The Simplest relation among these is given by

P(O, 2,0,0) — 2'P(O, 0,0,1) 2P(Z, 1,0,0) + P(4, 0,0,0) (44)

where the indices are to be understood in the sense of (21) with all »; for
i>4 are equal to zero.
For the case N =2 a basis for polynomials of type (22) is given by

2 n, 2
Pun#i=( X 2] % o (45)
a=1 a=1

The relation with (21) is that (45) equals P, with m;=n,, m,, =1, and all
others are zero. B

This basis has the following complications. A product of two such
polynomials is no more the polynomial to the index given by the sum of
the indices of the factors. In general, a product of two basis elements is a
linear combination

P(no,nc)(¢) P(mo,mc)(¢) = Z C%;’Zi’) (m”’m”)P(k,),kc)(qs) (46)
(ko k)

k,=n,+m,

kC=nC+mC
We do not have closed expressions for the coefficients C{je:jeh 7). We
tabulated those we needed in our programs. The table was generated using
computer algebra.
The Gaussian integration of polynomials of type (45) is given by

n, n,

Z [Z‘;ZZi+1/2(Na ) P(ko,kc+1/2)(lp) (47)
=0
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with
IZ‘:): II?C(ND y) = GZnL,, ch(l’ V) Gno,ko(4nc + 4kc + Na y) (48)

where G, (N, y) is as in (8). The formula (47) does not yet provide a
formula for the Gaussian integration in the basis (45), as the second term
is not yet expanded in this basis. Its expansion involves again rather com-
plicated structure coefficients which we determined by means of computer
algebra.

We used this representation to check our results with the overdetermined
representation. This polynomial basis turned out to a less appropriate
representation than the following one with polar coordinates. Both suffer
the drawback that they apply to N =2 only, and cannot be continued to
any N. (They can be continued but do not coincide with the desired models
at integer N.)
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